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Product Description

This work will focus on experimentally evaluatimtifferent machine learning techniqudreinforcementlearning,
genetic algorithm®xplaination-based learnirand case-baseeéarning) in the domain ofdvancedLife Support
Systems (ALSS). The experiments wiingefrom adjusting controparameters tdearning newsequences of
behaviors. The goal is tdeterminewhich machine learning algorithmasill best provide the adaptiveness and
robustnesseededor long-term control of life support systems such as BIO-Plexsedndgoal is todetermine
how machine learning algorithms wilhterface toautonomous contrarchitecturesuch as 3T or Remote Agent.
Experiments will use actual hardware (provided by JSCdf@simulations. Theroduct ofthis researchwill be a
detaileddescription, supported bgrototypesand experiments, of how machine learning algorithoas integrate
with autonomous control architectures to control advanced life support systems.

This is anew, pull task

Task Resources and Outline

FY 2000 FY 2001 FY 2002
Budget $500K $500K $500K
Cost Sharing 0 0 0
Civil Servants 3 3 3
Contractors 3 3 3
Academics 1 1 1
TRL 1 2-3 3-4

Cost breakout $300K JSC, $150K ARC, $50K Rice

Benefits

The BioregenerativePlanetary Life SupporSystem Test ComplexBIO-Plex) will consist of a complex of 5
chambers aNASA JSC combining biologicadnd physiochemical life support technologiespgmvideall the air
andwater,andmost of thefood for a crew of four on a continuous basis. Initial testing ssheduledfor 2001,
culminating in a 425-day test starting in 2006. Intelligent, autonomous contralréadybeen identified as a key
technology for BIO-Plex, yetherearestill substantialresearchissues thaheed to be addressbdforecontinuous,
autonomous control of BIO-Plex is possible. Among these research issues is machine learning. There will be many
unknowns inBIO-Plex and the autonomous control system wihlave to adaptwith a minimum of human
intervention. Over the course of a 425-day test many control parameters and segilerdemnge or beefined and

it will be costly tohave to usénuman programmers tkeepthe autonomous control systeup-to-date. Machine
learning techniques will allow for lower cost testing (and, eventually, lower cost missions) by reducing imetiuthe
for human interventiorand the needfor reprogramming of the autonomous contsgstem. Machine learning
techniqueswill also result in a more robust control system thah accommodate changeger time. Wealso



expect this research to impact autonomous control of missions toad@dc®ntrol of in-situ propellanproduction

systems. As for research benefits, we expect this project to stretch our theoretical understanding of machine learning
algorithms, while integration with real-world control systems will enhance our engineering understamdautiot

learning algorithms.

Technical Approach

Technical abstract

The primary goal of thigesearch is talesign amautonomous control system thedén keepkey parameters of a
closedsystem withinpre-determinedbounds in a near-optimal way even when traessignificantchanges in the
underlying environment over time or when there are unknown or underspecified aspects to the environment. To use
a life support example, this meanskeepthe levels of gasesyaterand foodwithin life sustainingrangeseven

when environmental condition®.g., the amount of oxygeproduced byplants, the amount ofarbondioxide
produced by people, the amount of contamination in the wateeffibiency of biology-basegrocessing machines,

etc.) change ovetime andmay noteven beknown ahead oftime. Controlling a system like this willequire
sophisticated machine learning techniques. In addition, learning needs tovbdeuthe software iscontrolling the

system, so off-line learning techniques that can transfer to on-line control systems will also be a key component of
this research.

Approach

Our approachbuilds on ourexperiences ircontrolling several earlyadvancedife support system testand the
relationships that we have developed with the advancedupportresearchers atSC [Schreckenghost et al 1998a;
Schreckenghost et al 1998b]. Gapproachalso builds on work at Ameg8oyan & Moore, 1998; Mooreet al,
1998] andwork at Rice [Subramanian & Hunter, 1992; Subramania@adon,1993; Subramanian &ordon,
1996] in applying machine learnintgchnigues tonon-static environments. In bringing together thessearch
efforts we hope to create an integrated solution for adaptively controlling advanced life support systems.

Our technical approach consists of three inter-related tasks:

1. Defining learning tasks in the control of advanced life support systems.

2. Choosing specific learning algorithms applicable to the tasks defined in (1).

3. Designing theinterface betweemnachine learning algorithmand autonomous controarchitecturessuch as
Remote Agent and 3T.

In the first task, we will look at thanderlying dynamics othe system we want to control. This will bémaad
task that will look at current systems (e.g., the water recovery system (WRS)) that are currently being tested, at
term systems (e.gBIO-Plex) that arebeing built, and atlong-term systems (e.g., a Mdbsse)that are being
proposed. The goal of this task is to determine exactly which aspegiaréoneters) othese systemare amenable
to learning techniquesind where machine learning techniques caeduce the need for preprogramming or
reprogramming control systems. We expect to look at how machine leaemibgth adjust low-levelparameters
(e.g., the setting of a pump) and adjust high-level sequences of actions (epgoc#uerrefor restarting a machine).
The guestions we wilheed toanswer includewhat time scalesare decisions beingnadeat, whatcan belearned
within a given amount ofesourcesandhow can learning béntegratedwith the actual controlling of thesystem.
By identifying the learning tasks within ALSS that we want to address and determining which aspectsystethe
are worth learning we will be ready to start applying learning algorithms to the control system.

In the second task, we will look at a variety of machine learapmyoaches, including reinforcement learning and
genetic algorithms at the real-time control level and explanation-based leéEBihgand case-basddarning(CBL)

at the sequencer level. We will evaluate these techniques with respect to the parameters and sequences that need to |
learned as defined in Task 1. This investigation will be specific to the ALSS domain. We will be looking at how
“rewards” for actionsare sampledfrom the underlyingdynamicalsystemandhow quickly our learning algorithms

need towork comparedwith the changes tothe advancedlife support system. This task will give us an
understanding of how different learning algorithms will connect with the underlying dynamic system.



In the third task, we will examine owurrentautonomous contrarchitectures to determid@mw machindearning
techniques can be integrated with them. Currently, neither 3T nor Remote Ageriuilaue learning capabilities.
While this project will not provide such “built-in” capability (since we believe that no single learning algorithm is
applicable to all of the domains in which thesehitecturesre used), itwill produce adesign foraddingmachine
learning to autonomous control. In particular, we will design and document intesiteeenthe machindearning
algorithms chosen in Task 2 and our architectures.

We will also explore th@ption of having two control systems: aff-line system running on simulatethta and
doing learning;and anon-line system actually controlling tlaglvancedife support machines.When the off-line
system has achieved a level of robustness ketpect tothe simulation, themrode ispassed tadhe on-line system
for use in control.

Experimental technique

This is not a thought experiment. We wpkerform the three tasks listed in the previous section through
prototyping and experimentation with actual, workamyancedife support systems, with simulations advanced
life support systemsand with data gatheredrom tests ofadvancedife support systems. Testing déarning
algorithms will take place inconjunction with on-going tests of autonomous control algorithms bfeimded by
other sources. There will be considerable leverage off of existing tasks, including the Adjustable Alestiney,
which will provide a discrete event simulation tlsah be used imur experimentsandthe WRS test irDecember
1999, which will provide datafor analysis. Waewill also usedatafrom early BIO-Plextesting that isexpected to
begin in FY 2000 and continue in FY 2001.

Prototypes will bémplemented inorder togather specificdataabout how quicklydifferent algorithms can learn

control parameters and sequences, what kind of training data they need, whether they can be used in real-time and how
robust theyare tonoisy data. Inall cases wewill use either actualdata or high-fidelity simulations to test
algorithms. Quantitative results will be gathered as to the effectiveness of different learning algorithms on this data.

Related Work

Machine learning is a largand active research aregsee[Mitchell, 1997]). We will focus ouefforts on machine
learning as applied to real-timeontrol systems. Thisreahas receivedless attention in the machirdearning
community. Whilethere has beensome work in robotic learning, especiallysing reinforcement learning
[Kaelbling et al 1996; Santamar& al 1998], therehas beermuch less work in applying machine learning to
processcontrol. One attempt was a machine learning system to control a haatmmpwer station located in
Sweden. Inthat systemmachine learning wasgsed to produceontrol rules for the injection of NH@to the
combustion chamber [Asker & Bostr, 1995]. It is important to distingbetiveen machine learnirend adaptive
control. In the latter, the basic structure of theamic model is fixedleaving only theparameterestimation
problem. In our case, the control systems are so experimental that classical adaptive control will not be enough.

Work on integrating machine learning with control architectures hasbelso scarceyith the notable exception of

Soar [Laird et al, 1987]. There have also been recent efforts at doing machine learningaoifHhen transferring

the results to an on-line control systé@refenstette et al990]. The investigators of this proposaé in close

contract those researchers (who are at the Naval Research Lab) in order to learn what can be applied to our problems.

Status and Milestones

This is a newtask. The taskeadershave been involved ifoth autonomous control afdvancedife support
systems and involved in machine learniegearch [Boyan &oore 1998],creating an idealeam for tacklingthis
problem. In particular, the NASASC team has been involved iresting of advancedife support autonomous
control software during &5-daytest in August 199%nd a 90-dayest in the fall of 1997Schreckenghostt al ,
1998a; Schreckenghost al, 1998b]. The same team will also ffr®viding autonomous contrgbftware for an
upcoming 90 day test of an advanced water recovery system (WRS). In all cases, the 3T architecturecfBainasso
1997; Bonasso & Kortenkamp, 1994] is being used. 3T hasbakso chosen abe baseline for control d@IO-



Plex. The JSC team will be augmented with machine learning specialists from [Bmes1 & Moore 1998] and
Rice University [Subramanian & Gordon, 1996] and by Remote Agent developers at Ames (Gregory Dorais).

FY 2000 Milestones

Our FY 2000 milestone is tproduce awhite paperthat discusses machine learnilgguesspecific to control of
advanced life support systems. This paper will be the result of prototypes and experiments, witkddestisong

a simulation of the Variable Configuration CO2 Removal (VCCR -- implemented during the Adjustadiemy
Testbed task in FY 1999ndusing datafrom the WRS test irearly FY 2000. The whitgpaperwill discuss the
trade-offs of different machine learning technigaad how theycan beuseful in long-term control oddvancedife
support system. Theaperwill also discuss integratiomith Remote Agenand3T. At theend of FY 2000 we
will choose a small number ofachine learning techniquesd asmall number of learning tasks in ALSS and
continue working with them in FY 2001.

FY 2001 Milestones

Our FY 2001 milestone is to prototype the integration of a small number of machine I¢adhinigues (chosen in
FY 2000) into both 3T and Remote Agent. This prototype will then be used to control both sinadizteckdife
support systemsnd actualtests beingconducted at’1SC.  We will experiment with both on-lineand off-line
learning, with respect to efficiency and safety. BIO-Plex initial testing is scheduled to begin in FY 2001veitid we
begin applying the integrated machine learning and autonomous control system to those tests. Weasdlesdso
the usefulness of machine learning to autonomous control of advanced life support systems.

FY 2002 Milestones

Our FY 2002 milestones include continued experimentation with the learning-enhanced control sysaenBiO-
Plex tests and accumulation of results. A second milestonedevidop amulti-year plan for building amdaptive
control system for thé25-day BIO-Plexest in FY 2006. The multi-year plan will ased orresultsobtained
during three years of researchapplying machine learning to the control AdvancedLife SupportSystems. We
will pursue project (i.e., non-research) funding for the control system of BIO-Plex at this time.

Customer Relevance

The Human Exploratioand Development of Space strategic plésts research andechnologydevelopment for
advanced life support systems as an explicit goal of the Enterprise. Any advanced life support system, especially if a
long-duration mission is envisioned, will need intelligent autonomous control thatan adapt tochanging
circumstances and requirements. The BIO-Plex project is a major HEDS initiative émdedsmonstrateédvanced

life support systemsere onearth. Thisresearchwill directly support these efforts. Weave had humerous
discussions wittBIO-Plex engineers (Terryri, Mary Beth Edeen, Karen Meyerapout their autonomous control
requirementsandfeel that this proposahddresseseveral ofthem. JSC/EC haalreadycommitted money tdund

research into autonomous control of advanced life support systems, which will complement this project.

The Space Science strategic plists researctinto autonomous operatiommdintelligent systems as an explicit
goal of the Enterprise. In particular, the in-situ propel@otuctionandthe robotics initiatives irSpace Science
will benefit directly from this research. We expect this research to also sw@gamtive on-boardutonomy,which

iS a cross-enterprise requirement.

Since this is a pull task, weave enclosed ketter of support fromTerry Tri, program manager of BIO-Plex at
NASA Johnson Space Center.
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